Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Lin Lu,* Da-Shun Zhang and Bei-Ping Liu

Department of Chemistry, Hunan University of Arts and Science, Changde, Hunan 41500, People's Republic of China

Correspondence e-mail: lu736@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.052$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[aquabis(μ-benzene-1,3-dicarboxylato)bis(μ-3-carboxybenzoato)digadolinium(III)] monohydrate]

In the title compound, $\left[\mathrm{Gd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Gd}^{\mathrm{III}}$ ions are nine-coordinated and linked by carboxylate O bridges, giving rise to right- and left-handed inorganic helical chains. The crystal structure is stabilized by intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, linking the chains into a three-dimensional framework.

Comment

The construction of metal-organic frameworks (MOFs) is of current interest in the field of crystal engineering and supramolecular chemistry, stemming not only from their potential applications as functional materials (Leininger et al., 2000) but also their intriguing variety of architectures and molecular topologies (Bradshaw et al., 2005). However, MOFs, based on right- and left-handed inorganic helical chains, constructed from $\pi-\pi$ stacking effects and hydrogen bonds, are less developed. Here we report a new three-dimensional microporous MOF based on right- and left-handed inorganic helical chains constructed from hydrogen bonds.

The overall structure of the title compound, (I), is of a three-dimensional hydrogen-bonded framework, based on a two-dimensional layer structure constructed of helical chains. In the asymmetric unit there are two independent $\mathrm{Gd}^{\mathrm{III}}$ ions, two ip (completely deprotonated m-phthalic acid) ligands, two Hip (singly deprotonated m-phthalic acid) ligands, one coor-

Received 14 June 2006
Accepted 29 June 2006

Figure 1
A drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
dinated water molecule and one uncoordinated water molecule. Gd1 is nine-coordinated by O atoms of ip and Hip ligands and a water molecule in a tricapped trigonal-prismatic geometry. Gd 2 also adopts a GdO_{9} tricapped trigonal-prismatic geometry, which is defined by O atoms of ip and Hip ligands (Fig. 1).

The $\mathrm{Gd}-\mathrm{O}$ bond lengths span the range 2.358 (2)2.666 (2) \AA. The ip ligands show pentadentate and hexadentate coordination modes, while the Hip ligands exhibit a tridentate coordinated mode with one carboxyl group undeprotonated; this is confirmed by IR analysis (the bands at 1727 and $1690 \mathrm{~cm}^{-1}$ are derived from the undeprotonated carboxyl groups, while the deprotonated carboxyl groups are characterized by the bands at 1606 and $1484 \mathrm{~cm}^{-1}$; Kakihana et al., 1987).

The $\mathrm{Gd}^{\text {III }}$ ions are further linked by ip and Hip ligands, giving a two-dimensional layer structure (Fig. 2) in which the nine-coordinated Gd1 and Gd2 atoms are bridged, with Gd•Gd distances of 3.8278 (7) and 4.111 (1) \AA, respectively, by carboxylate O atoms from ip and Hip ligands, leading to the left- and right-handed helical chains.

To the best of our knowledge, this type of inorganic helical chain linked by carboxylate O atoms is rare. Another structural feature of (I) is the three-dimensional hydrogen-bonded framework with a one-dimensional trigonal channel $(6 \AA)$ along [001] filled with water molecules. The uncoordinated water molecules are involved in typical hydrogen bonds (Table 2).

Experimental

An aqueous mixture of $\mathrm{Gd}_{2} \mathrm{O}_{3}(181 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{ip}(166 \mathrm{mg}$, $1.0 \mathrm{mmol})(10 \mathrm{ml})$ was placed in a Teflon reactor $(23 \mathrm{ml})$, heated for

5 d , and then cooled to room temperature. Colourless crystals were obtained in 68% yield based on Gd.

Crystal data

$\left[\mathrm{Gd}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1009.00$
Monoclinic, $P 2_{1} / c$
$a=10.438$ (2) \AA
$b=13.811$ (3) \AA
$c=21.254$ (4) \AA
$\beta=95.60(3)^{\circ}$

$$
\begin{aligned}
& V=3049.3(11) \AA^{3} \\
& Z=4 \\
& D_{x}=2.198 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=4.40 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { B.ock, colourless } \\
& 0.34 \times 0.16 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID-S IP areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.303, T_{\text {max }}=0.617$
28964 measured reflections 6991 independent reflections 6489 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0528 P)^{2}\right. \\
\quad+0.445 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.006 \\
\Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
=0.96 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Gd} 1-\mathrm{O} 8^{\text {i }}$	2.358 (2)	Gd2-O7	2.271 (2)
Gd1-O1	2.371 (2)	$\mathrm{Gd} 2-\mathrm{O} 2{ }^{\text {iii }}$	2.397 (2)
Gd1-O3	2.374 (2)	$\mathrm{Gd} 2-\mathrm{O} 9^{\text {ii }}$	2.413 (2)
Gd1-O10 ${ }^{\text {ii }}$	2.470 (2)	Gd2-O5	2.418 (2)
Gd1-O17	2.472 (2)	Gd2-O15 ${ }^{\text {iv }}$	2.438 (2)
Gd1-O16 ${ }^{\text {iii }}$	2.492 (2)	Gd2-O4	2.507 (2)
Gd1-O6	2.563 (2)	Gd2-O3	2.513 (2)
Gd1-O5	2.580 (2)	Gd2-O16 ${ }^{\text {iv }}$	2.602 (2)
Gd1-O2	2.666 (2)	$\mathrm{Gd} 2-\mathrm{O} 10^{\text {ii }}$	2.669 (2)
Gd1-Gd2	3.8278 (7)		
$\mathrm{O} 8^{\text {i }}$-Gd1-O1	87.80 (8)	$\mathrm{O} 7-\mathrm{Gd} 2-\mathrm{O} 2{ }^{\text {iii }}$	78.92 (8)
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Gd} 1-\mathrm{O} 3$	90.76 (7)	$\mathrm{O} 7-\mathrm{Gd} 2-\mathrm{O} 9^{\text {ii }}$	73.25 (8)
$\mathrm{O} 1-\mathrm{Gd} 1-\mathrm{O} 3$	146.95 (7)	$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Gd} 2-\mathrm{O} 9^{\text {ii }}$	148.69 (8)
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Gd} 1-\mathrm{O} 10^{\text {ii }}$	138.51 (7)	$\mathrm{O} 7-\mathrm{Gd} 2-\mathrm{O} 5$	85.68 (8)
Symmetry codes: $-x+2, y+\frac{1}{2},-z+$	$\begin{equation*} -x+2, y-\frac{1}{2},-z+\frac{1}{2} \tag{ii} \end{equation*}$		$-z ; \quad \text { (iii) }$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O17-H17B $\cdots \mathrm{O} 1 W$	$0.85(4)$	$1.92(4)$	$2.769(5)$	$173(5)$
O1 $^{2} W-\mathrm{H} 1 W B \cdots \mathrm{O} 12^{\mathrm{i}}$	$0.85(7)$	$2.11(4)$	$2.918(5)$	$158(10)$
O1 $^{\mathrm{H}}-\mathrm{H} 1 W A \cdots \mathrm{O}^{\mathrm{v}}$	$0.85(1)$	2.21 (3)	$2.989(4)$	$152(6)$

Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Water H atoms were located in difference maps and refined isotropically with distance restraints $\mathrm{O}-\mathrm{H}=0.85$ (1) and $\mathrm{H} \cdots \mathrm{H}=$ $1.45(1) \AA]$ and $\left.U_{\text {iso }}(\mathrm{H})=0.055(15)-0.16(4) \AA^{2}\right]$. The remaining H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$

metal-organic papers

Figure 2
A view of the two-dimensional structure of (I), based on the left- and right-handed helical chains.
$=x U_{\text {eq }}(\mathrm{C}, \mathrm{O})$, where $x=1.2$ for aromatic H and $x=1.5$ for all other H atoms.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

References

Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. \& Rosseinsky, M. (2005). Acc. Chem. Res. 38, 273-282.
Bruker (1998). SMART-NT, SAINT-NT and SHELXTL-NT (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Kakihana, M., Nagumo, T., Okamoto, M. \& Kakihana, H. (1987). J. Phys. Chem. 91, 6128-6136.
Leininger, S., Olenyuk, B. \& Stang, P. J. (2000). Chem. Rev. 100, 853-907.
Rigaku (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

